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We propose that the distinguishing characteristic of Aspect-Oriented Programming (AOP) lan-

guages is that they allow programming by making quantified programmatic assertions over pro-

grams that lack local notation indicating the invocation of these assertions. This suggests that

AOP systems can be analyzed with respect to three critical dimensions: the kinds of quantifica-

tions allowed, the nature of the interactions that can be asserted, and the mechanism for combin-

ing base-level actions with asserted actions. Consequences of this perspective are the recognition

that certain systems are not AOP and that some mechanisms are meta-AOP: they are sufficiently

expressive to allow straightforwardly programming an AOP system within them.

1. Introduction

This paper is about Aspect-Oriented Programming (AOP) qua programming language. We are

interested in determining what makes a language AOP. This work was prompted by a question

from Tzilla Elrad, who asked whether event-based, publish and subscribe (EBPS) (for example,

[16]) is AOP. After all, in a publish-and-subscribe system, separate concerns can be realized by

hay'rag concerns subscribe to the events they care a_ut, In thinking about that question, we have

come to the belief that two properties, quantification and implicit invocation (which in the past

we have called obliviousness [15]) are necessary for AOP. Understanding these relationships

clarifies the variety of po,.sible AOP languages and suggests research directions for AOP.

Here we are addressing the structural essence of AOP here, not it's application--somewhat

similar to the difference between defining Object-Oriented Programming (OOP) systems in terms

of polymorphic methods and inheritance, versus waxing euphoric about objects as the appropriate

way to model the world. (Here we take inspiration from Wegner [31], who early in the OOP dis-

cussion tried to clarify the dimensions of OOP language design.) Our definition clarifies why

some systems that might seem to be AOP are not, and why some systems are stronger than just

AOP--their primitives allow straightforward construction of AOP mechanisms at the user level.



2. Local and unitary statements

Programming languages are about writing a structure of statements that a compilation or interpre-

tation process will elaborate as a series of primitive directions. (The directions themselves will be

a finite text, though their interpretation may be unbounded.) The earliest computer (machine lan-

guage) programs had a strict correspondence between the program text and the execution pattern.

Generally, each programming language statement was both unitary and local-unitary in that it

ended up having effect in precisely one place in the elaborated program, and local in that it is al-

most always proximate to the statements executing around it.

The history (of this part) of programming languages has been about moving away from purely

local and unitary languages--about mechanisms that let the programmer separate concepts prag-

matically, instead of being tied to saying things just where they happen. The first exceptions to

locality were subprograms (i.e., procedures, subroutines, functions.) Subprograms were a great

invention, enabling abstracting out some behavior to someplace else. They have many virtues for

separating concerns. For example, expertise in, say, Runge-Kutta methods could be embodied in

the writer of the Runge-Kutta library. The application programmers would be users of that li-

brary. They still had to know something about Runge-Kutta (when it was useful, how to invoke

it), and had to locally and explicitly call it in their code. The program was still unitary: it exhibited

a direct correspondence between one statement in the programming language written, one se-

quence of machine instructions executed.

Inheritance in object-oriented programming was another important introduction of non-

locality. Executing inherited behavior is non-local. How explicit this execution was depended on

whether the OO language used send super or mixins.

Send-super systems like Java and Smalltalk allow the programmer to explicitly invoke the be-

havior of its parent class or classes, without knowing exactly what behavior is being invoked.

Adding behavior to classes higher in the class structure allows a limited form of quantified pro-

gram statements--that is, statements that have effect on many loci in the underlying code. For

example, suppose we wish to introduce a "display" aspect to a program about simulating traffic

movement. We will want to make quantified statements like "Whenever something moves (exe-

cutes its move method), the screen must be updated." Imagine that all things that move are de-

scendants of the class of moveable-object. We can accomplish this with send-super inheritance, if

we have a cooperative base-class programmer--one who will consistently follow directions. We

make the behavior of the move method in movable-object be the display update and request the

programmers of derivative classes invoke send-super at the end of their code. This requires the

derived class programmers to know that they have to do something, but relieves them of having



to knowwhatexactlyit is thattheyhaveto do.We'realsorestrictedwithrespectto thelocusof

behavior--wecanaskprogrammersto do thesend-superatthestartof theircode,orat theend,

butourdirectionsprobablyneedtobeconsistentthroughoutthesystem.

Requiringcooperationis notgoodenough.Programmersmayfail to besystematicallycoop-

erative,thebaseprogrammayitselfbealreadywritten,or it maybeotherwiseoutof ourcontrol.

FortrueAOP,wewantoursystemto work withprogrammerswhodon't haveto be thinking

aboutotherconcernsastheyprogram.Thebehaviorof theseparateconcernmustbe implicitly

invoked. An early example of something close to implicit invocation is mixin inheritance, found

in MacLisp and Symbolics Lisp [5, 25]. With mixins, the derived-class functionality is deter-

mined by assembling the code of the derived class with the advice of its super classes. The aspect

programmer can make quantified statements about the code by adding mixins, while the derived

class programmer remains (almost) ignorant of these actions. The scope of quantification is con-

trolled by which classes inherit the mixin. That is, we can quantify over the descendants of some

superclass, for a given single method. In the screen update example, adding an "after" mixin to

movable-object's move accomplishes the automatic update. Except that class inheritance relation-

ships are part of a class's definition, we would have an AOP system (and even this caveat has an

exception [12].)

In general,

A OP can be urzderstood as the desire to make quantified statements about the

behavior of programs, and to have these quantifications hold over programs that

have no explicit reference to the possibility of additional behavior.

We want to be able to say, "This code realizes this concern. Execute it whenever these circum-

stances hold." This breaks completely with local and unitary demands--we can organize our pro-

gram in the form most appropriate for coding and maintenance. We do not even need the local

markings of cooperation. The weaving mechanism of the AOP system can, by itself, take our

quantified statements and the base program and produce the primitive directions to be performed.

3. Implicit Invocation

Implicit invocation states that one can't tell that the aspect code will execute by examining the

body of the base code. implicit invocation is desirable because it allows greater separation of

concerns in the system cceation process---concerns can be separated not only in the structure of

the system, but also in the heads of the creators.



Conventionalprogramminglanguagesalreadyhavemechanismsfor separatingconcerns,most

prominently,subprograms.ForAOPto beaninterestingtechnology,it mustbebecauseit getsus

expressivefacilitiesbeyondwhatconventionallanguagesalreadyprovide.SinceanAOPsystem

withoutimplicit invocationis insufficientlydifferentfrom a conventionalsubprogramcall, it

wouldmeritonlymarginalinterest.

4. Quantification

AOP is thus the desire to make programming statements of the form

In programs P, whenever condition C arises, perform action A. (1)

over "conventionally" coded programs P. This suggests three major dimensions of concern for

the designer and implementer of an AOP system:

• Quantification: What kinds of conditions C can we specify.

• Interface: How do the actions A interact with the program P and with each other.

• Weaving: How will the system arrange to intermix the execution of the actions of pro-

gram P with the actions A.

In an AOP system, we make quantified statements about which code is to execute in which cir-

cumstances. (Quantification is a less-than-completeIy-precise term; Appendix A contains an ini-

tial attempt to formalize this concept.)

Over what can we quantify? Broadly, we can quantify over the static structure of the system

and over its dynamic behavior.

4.1. Static quantification

The static structure is the program as text. Two common views of program text are in terms of the

public interfaces of the program (typically methods, but occasionally also public variables) and

the complete structure of the program--typically, the parsed-program as abstract syntax tree,

(though occasionally the object code[7].)

Black-box AOP systems quantify over the public interface of components like functions and

object methods. Examples of black-box systems include Composition-Filters [2], synchronization

advice [19], aspect moderators [8] and OIF/14]. A simple implementation mechanism for black-

box AOP is to wrap components with the aspect behavior.

Clear-box AOP systems allow quantification over the internal (parsed) structure of compo-

nents. Examples of such system include Aspect], which allows (among other things) quantifying

over both the calling and accepting calls in subprograms [2 I, 22], and Hyper/J, whose composi-



tion rulesallowquantifyingoverelementssuchastheinterpretationof variablesandmethods

withinmodules[26].

A givenAOPsystemwill presentaquantificationlanguagethatmaybeassimpleasjust al-

lowingaspectdecorationof subprogramcalls,orcomplexenoughto representpatternmatching

ontheabstractsyntaxtreeorcompiledstructureoftheprogram.Understoodthisway,aclear-box

AOPsystemcouldallowstaticquantificationssuchas"adda print statementto showthenew

valueof anyassignmentto avariablewithinthebodyof awhileloop,if thevariableoccursinthe

testof thewhileloop."

Clear-boxandblack-boxtechniqueseachhaveadvantagesanddisadvantages.Clear-boxtech-

niquesrequiresource.Theyprovideaccessto all the(static)nuancesof theprogram.Theycan

straightforwardlyimplement"caller-side"aspects(aspectsassociatedwith thecallingenviron-

mentof a subprograminvocation).Black-boxtechniquesaretypicallyeasierto implement(in

environmentslike Lisp,wherecallsareordinarilyroutedthroughamodifiablefunctionsymbol,

theycanbedownrightL:ivial)andcanbeusedoncomponentswherethesourcecodeis lacking.

Becauseblack-boxtechniquescan't quantify over anything besides a program's interface,

clear-box techniques arc, especially useful for debugging. For example, a clear-box system could

implement a concern like a statement-execution counting profiler, or writing to a log file on every

update of a variable whose name starts with "log." However, black-box techniques are more

likely to produce reusable and maintainable aspects--an aspect tied to the code of a module can

easily slip into dependence on the coding tricks of that module. Interfaces imply contracts.

Clear-box techniques are more difficult to implement, as they usually imply developing a ma-

jor fraction of a compiler. A typical clear-box implementation of structural quantification needs to

obtain a parsed version of the underlying program, run transformation rules realizing the quanti-

fied aspects over that abstract syntax tree, and output the resulting tree back in the source lan-

guage for processing by the conventional language compiler. That can be a lot of work.

4.2. Dynamic quantification

Dynamic quantification is tying the aspect behavior to something happening at run-time. Exam-

ples of such occasions include

• The raising of an exception.

• The call of a subprogram X within the temporal scope of a call of Y. (The call of X
within the context of Y problem is an instance of the "jumping aspect" problem [2].)

* The size of the call stack exceeding some value.

o Some pattern of more primitive events in the history of the program being matched. For

example, after the "try password" routine has failed five times, with no intervening suc-
cesses.



Theabstractionsmostprogramminglanguagespresentaboutthestructureandexecutionof apro-

gramareonly a subsetof thepossibleavailableabstractions:Schemeallowsa programmerto

capturethe"currentcontext"andreinvokethecurrentbehavior.Cprogrammersglibly rummage

aroundonthestack,contentin theknowledgethatthepatternof procedurecallsis straightfor-

wardlyrecognizablesolongasthemachineandcompilerremainconstant.3-Lispandsimilar

reflectivesystemsallowtheprogrammeraccessto the interpreter'sstate[11].Elephantallows

referenceto previousvariablevalues[24].Theabilityto programwith respectto suchproperties

is aningredientof programminglanguagedesign.Evenif suchelementsareabsentin theunder-

lying language,anaspectlanguagemaystill allowquantificationoverthem.

5. Implementation issues

Assertion (1) suggests a design space for AOP languages. It implies choices in each of the three

dimensions: quantification, interface, and weaving.

• Quantification. Quantification incorporates the notions of defining the 'Join points" of

the code along with the language and mechanisms for selecting when a particular join
point deserves a particular aspect. Examples of possible join points include subprogram

calls, variable references and statements. As mentioned earlier, one can quantify over

the static structure of the program or over its dynamic behavior. Examples of the predi-

cates one can use to describe a static quantification include by package, by the inheri-
tance structure of the program, by the structure of call arguments, by the lexical struc-

ture of program element names, and by the nested structure of program elements. (Mas-

terscope is an early example of a quantification language for programs that has a rich
language for describing points in program structures [28].) Examples of dynamic quan-

tification scope include the dynamic nesting structure of calls, and the occurrence of
particular events (e.g., "after x is assigned 3, while y is greater than 7"). There have also

been suggestions that the program of the base code could be provided mechanisms to

prevent aspect interactions, and that the system check for incompatible aspect applica-
tions.

• Interface. Interface includes the structure of the "aspect code," the interactions among

aspects, and the relationships and information sharing among the aspects and base code.
Issues of interface include what context of the underlying program is available to an as-

pect, how aspects communicate among themselves and with the underlying program,

ordering of aspects at the same locus, and aspect parameterizations

• Weaving. Weaving expresses how the system arranges to intertwine the execution of
the base code and aspects. Key elements include the actual weaving mechanism (for ex-

ample, compile-time weaving, altering the interpretation process, or meta- or reflective

mechanisms) and the ability to dynamically change quantifications in a running system.

6. Aspect-Oriented Languages

To return to Elrad's question, what qualifies as an aspect-oriented language? Let us consider

some possibilities:



Rule-based systems. Roughly, rule-based systems like OPS-5 [4] or, to a lesser extent,

Prolog are programming with purely dynamically quantified statements. Each rule says,
"Whenever the condition is true, do the corresponding action." (We are ignoring the

tendency of rule-based systems to execute only one matching rule.) If we all pro-

grammed with rules, we wouldn't have AOP discussions. We would just talk about how

rules that expressed concerns X, Y, and Z could be added to the original system, with
some mention of the tricks involved in getting those rules to run in the right order and
to communicate with each other. The base idea that other things could be going on be-

sides the main flow of control wouldn't be the least bit strange. (One recent paper pro-

posed doing AOP with AI style inference [23].)

But by and large, people don't program with rule-based systems. This is because
rule-based systems are notoriously difficult to program. They've destroyed the funda-

mental sequentially of almost everything. The sequential, local, unitary style is really

very good for expressing most things. The cleverness of classical AOP is augmenting
conventional sequentially with quantification, rather than supplanting it wholesale.

Event-based, publish and subscribe. In EBPS systems, the subscription mechanism is

precisely a quantification mechanism. ("Let me know whenever you see something

like..."). The question is then, is EBPS implicitly invoked? If the application's pro-

gramming style is to use events as the interface among components or if the underlying
system automatically generates interesting events, then EBPS can be used as a black-

box AOP mechanism. On the other hand, if we expect the programmer to scatter event

generation for our purposes throughout otherwise conventional programs, then EBPS is

not implicit and hence, not AOP.

Frameworks. Framework systems [9] provide a high-level organization (a main flow

of control) into which the application programmer plugs in behavior at particular points.

In some sense, a framework comes with a particularly defined set of concerns and al-

lows plugging in (and separately specifying) just those concerns. Often frameworks will
have default behaviors for these concerns. While frameworks provide a way of separat-

ing certain concerns, their restriction to a set of predefined concerns keeps the frame-
work mechanism from rising to the level of a language for separating concerns.

Intentional Programming and Meta-programming. Intentional programming (IP) [1]

and meta-programming (MP) [20] provide the ability to direct the execution order in
arbitrarily defined computational patterns. They can be seen as environments for writ-

ifig transformation compilers (that is, a mechanism for implementing clear-box AOP),
rather than as self-contained realizations of the AOP idea.

Generative Programming. Similarly, generative programming [10] works by trans-

forming higher-level representations of programs into lower-level ones (that is, by

compiling high-level specifications.) By incorporating aspects into the transformation
rules, one can achieve AOP in a generative programming environment.

7. Closing Remarks

We have identified AOP with the ability to assert quantified statements over programs without

explicit reference to these statements. This implies

• AOP is not about OOP. OOP is a popular programming language technology. Most

implementations of new language ideas are done in the context of OOP. The class hier-
archy of 00 systems is a convenient structure over which to quantify. However, "quan-
tification" and "implicit invocation" are independent of 00. Therefore, it is perfectly



reasonabletodevelopAOPfor afunctionalor imperativelanguages.Workillustrating
thispointincludeCoady et. al's AspectC for C [6] and Wand's ADJ/PROC for a first-

order functional language [29, 30].

AOP is not useful for singletons. If one has an orthogonal concern that is about ex-

actly one place in the original code, and that orthogonal concern will not propagate to

other loci as the system evolves, it is probably a bad idea to use AOP for that concern.

Just write a call to the aspect procedure into that place, or permute the source code in

whatever way necessary to achieve the aspect. The cost to the software maintenance

and evolution process by the existence of an additional aspect probably exceeds the
benefit of using that aspect in a single place.

Better AOP systems are more implicit. They minimize the degree to which program-
mers (particularly the programmers of the primary functionality) have to change their

behavior to realize the benefits of AOP. It's a really nice bumper sticker to be able to

say, "Just program like always, and we'll be able to add the aspects later." (And change
policies later, and we'll painlessly transform the code for that, too.) Realizing that

bumper sticker is it challenge to the developers of AOP.
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Appendix A: Formalizing the Notion of Quantification

What is quantification? Informally, we have the idea that some programmer has written some

code, m, composed, say, of actions <_; y, z>. If one thinks about this in terms of implementing the

system entirely by an interpreter [17], the action of defining m has stored the association between

m and <a; y, z>. To execute m, the interpreter retrieves the value for m, getting <a; y, z>. This in-

terpreter is exhibiting preservation of assignment: If something is stored in a location, and noth-

ing comes along to change that assignment, then retreiving from that location will get back the

original value.

Imagine a join point at !/, where aspect a is to execute before !/- To make this happen, the pro-

grammer has likely made an assertion of the following form: "In situations that match point-

cut/predicate P, 'before' aspect a applies. If P(y) is true, when our interpreter goes for the value of

m, it gets back <_; a, y, z>. But there has not been an assertion of that value--that is, no user

statement said, "define m to be <_ a, y, z>" Rather, the system has combined the base assertion:

"m is <as y, z>" with the quantified statement about a pointcut V I_..P(/O--,a before k We thus under-

stand that the interpreter of an Aspect-Oriented Programming system is characterized by not pre-

serving assignment. Rather, such an interpreter has done some theorem proving--it has instanti-

ated a universally quantified formula about when an aspect applies with a particular piece of



code, and implicitly redefined a method definition with the result. Key elements of this are that

the base assertion and the aspect assertion can occur in either order, and that the aspect assertion

can modify many otherwise unrelated base assertions.

This is not an assertion about what mechanism the AOP system used to accomplish this re-

sult--it could have arisen from a compiler [21, 22, 26], by wrapping [2, 8, 14], by load-time

transformation [7], by a meta-interpreter [27], or by any number of mechanisms that haven't been

invented yet. It's an argument that separately specified behaviors have come to be executed to-

gether, and that some of these separate specifications were about groups of "join points." Nor

does the use of "theorem proving" imply that the process must be somehow intractable--the theo-

rem proving in question is as complex as the predicates the language designer provides and is

over the "closed world" of the specific program in question, and is therefore likely to be quite

computationally tractable.
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